Quadratic Function

Opening Definitions:

Algebraic Expression: A set of terms separated by " + , - or $=$ " sign.
Ex.: $2 x^{3}-5 x^{2}+x-7$
Terms are presented by multiplication of "factors", like: - $5 x^{2}$ in the example above.
Equation: An expression containing " = " sign.
Ex.: $x^{3}-2 x^{2}+x-3=0$
Relation: An equation with more than one variable.
A relation can be a Function, means one or more value of x, can have only one value for y.
Ex.: $y=x^{3}-x^{2}+3 x-2 \quad$ " x " is the independent variable, " y " the dependent.
If one value of x has more than one y, this is a Relation but not a function.
Ex.: $x=y^{2}-2 \quad$ since: $y^{2}=x+2 \quad$ Then: $y= \pm \sqrt{x+2}$ which is 2 Function.

Quadratic Identities

Perfect Square identities:

$$
\begin{aligned}
& (a+b)^{2}=a^{2}+2 a b+b^{2} \\
& (a-b)^{2}=a^{2}-2 a b+b^{2}
\end{aligned}
$$

Difference of Squares identity:

$$
a^{2}-b^{2}=(a-b)(a+b) \quad(a-b) \text { and }(a+b) \text { are known as conjugate factors. }
$$

Quadratic Equation:

General Form:

$$
a x^{2}+b x+c=0
$$

a, b, and c, are real numbers.
Solving quadratic equation:

1. By factoring: change it to: $a(x-h)(x-k)=0$, in which the solutions are: $x=h$ and $x=k$

Case 1, Ex.: If $a=1$:
$x^{2}-3 x-10=0$

Look for 2 numbers that their sum is " b ": $h+k=-3$ and their product is " c ": h. $k=-10$, In this example those numbers are: -5 and 2. Therefore: $(x-5)(x+2)=0$, and roots are 5 and -2 .

$$
\text { Case 2, Ex. 1: } \quad \text { If } a \neq 1: \quad-2 x^{2}+4 x+6=0
$$

Step 1: Factor GCF if possible,
Step 2: then proceed as per as case 1: $\quad-2\left(x^{2}-2 x-3\right)=0$
$h+k=-2$, and $h . k=-3$, so $h=-3$ and $k=1$. Therefore: $-2(x-3)(x+1)=0$, so roots are 1 and -3 .
Case 2, Ex. 2:

$$
x^{2}-3 x=0
$$

GCF is " x ", $\quad x(x-3)=0 \quad$ therefor: $x=0$ and 3 are the zeros or roots
Case 3, $\quad a \neq 1$, and: $b, c \neq 0$
Ex.: $\quad 2 x^{2}+x-6=0$
In this case the sum is still $b ; h+k=1$, but the product will be ac; $h \cdot k=2 .(-6)=-12$. So $h=-3$ and $k=4$ Break down the middle term (+1) into 2 numbers, in order to change the trinomial to a Quatronomial:

$$
\begin{aligned}
& 2 x^{2}+4 x-3 x-6=0 \quad \text { then factor it } 2 \text { by } 2 \\
& 2 x(x+2)-3(x+2)=(x+2)(2 x-3), \quad \text { therefor: } x=-2 \text { and } \frac{3}{2}
\end{aligned}
$$

2. Completing square:

Change the general form to: $a(x-h)^{2}=k$, then square root both sides.
Ex. 1: $2(x-2)^{2}-18=0$
$2(x-2)^{2}=18$
$(x-2)^{2}=9 \quad x-2= \pm 3$,
Therefor: $x=-1,5$
Ex. 2:
$-2 x^{2}+10 x-3=0$
$-2\left(x^{2}+5 x\right)=3$
$x^{2}+5 x=-3 / 2$

Use quadratic identity to change it into: $(x+5 / 2)^{2}$ by dividing b by $2,(5 / 2)$ then add $(5 / 2)^{2}$ to both sides in order to make the left side a perfect square:

$$
x^{2}+5 x+25 / 4=-3 / 2+25 / 4 \quad \text { Therefor: }(x+5 / 2)^{2}=19 / 4 \quad \text { then: } x= \pm \frac{\sqrt{19}}{2}-\frac{5}{2}
$$

3. Quadratic formula:

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Discriminant:

$$
\Delta=\mathrm{b}^{2}-4 \mathrm{ac}
$$

Nature of roots: $\Delta<0$: no real root, $\quad \Delta=0$: one real root, $\quad \Delta>0$: 2 real roots
Sum of roots: $S=-\frac{b}{a}$
Product of roots: $\mathrm{P}=\frac{c}{a}$
Vertex, Max or min are at: $\mathrm{x}=-\frac{b}{2 a}$

Quadratic Function:

General Form:

$$
y=a x^{2}+b x+c
$$

a, b, and c are real numbers.
The original form and the graph is called Parabola: $y=x^{2}$

$$
\begin{aligned}
& a \neq 0, \text { but } b=0 \text { and } c \neq 0 \\
& y=x^{2}+c \\
& x=0 \text { is axis of symmetry } \\
& \text { Vertex: } V(0, c)
\end{aligned}
$$

Ex. $y=x^{2}-4$

$a \neq 0$, but $b \neq 0$ and $c=0$
$y=x^{2}+b x=x(x-b)$
$x=\frac{-b}{2}$ is axis of symmetry

Ex. $y=x^{2}-2 x$

Standard or Vertex form: $\quad y=a(x-h)^{2}+k$
Axis of symmetry: $\mathrm{x}=\mathrm{h}, \quad$ Vertex: $\mathrm{V}(\mathrm{h}, \mathrm{k})$,

Factor form:

$$
y=a(x-b)(x-c)
$$

b and c are the x Intercepts, the axis of symmetry and the vertex at: $\mathrm{x}=\frac{b+c}{2}$. In all 3 cases "a" is the "Vertical Reflection, Expansion or Compression factor".

Examples of Quadratic functions and graphs:

Vertex form:

$$
y=2(x-2)^{2}+1
$$

Vertex at: $\mathrm{V}(2,1), \quad$ Axis of symmetry: $\mathrm{x}=2$ Y intercept: (0,9),
$a=2$, vertically expanded by a factor of 2 , (positive, opening up) $\Delta<0$, No real root, no x intercept.

Factor form: $\quad Y=-(x+1)(x-3)$
X Intercepts: $-1,3 \quad y=0$
Y Intercept: - (-1).(3) $=3 \quad x=0$
Axis of symmetry: $x=1 \quad(-1+3) / 2=1$
Vertex at: $V(1,4) \quad x=1, y=4$
$a=-1$, (negative, opening down)

