

Quadratic Function

Opening Definitions:

Algebraic Expression: A set of terms separated by "+, - or = " sign.

Ex.: $2x^3 - 5x^2 + x - 7$

Terms are presented by multiplication of "factors", like: - $5x^2$ in the example above.

Equation: An expression containing " = " sign.

$$Ex.: x^3 - 2x^2 + x - 3 = 0$$

Relation: An equation with more than one variable.

A relation can be a **Function**, means one or more value of x, can have only one value for y.

Ex.:
$$y = x^3 - x^2 + 3x - 2$$
 "x" is the independent variable, "y" the dependent

If one value of x has more than one y, this is a **Relation** but not a function.

Ex.: $x = y^2 - 2$ since: $y^2 = x + 2$ Then: $y = \pm \sqrt{x + 2}$ which is 2 Function.

Quadratic Identities

Perfect Square identities:

$$(a + b)^2 = a^2 + 2ab + b^2$$

 $(a - b)^2 = a^2 - 2ab + b^2$

Difference of Squares identity:

$$a^2 - b^2 = (a - b)(a + b)$$
 (a - b) and (a + b) are known as **conjugate** factors.

Quadratic Equation:

General Form:

$$ax^{2} + bx + c = 0$$

a, b, and c, are real numbers.

Solving quadratic equation:

1. By factoring: change it to: a(x - h)(x - k) = 0, in which the solutions are: x = h and x = k

Case 1, Ex.: If a = 1: $x^2 - 3x - 10 = 0$

Look for 2 numbers that their sum is "b": h + k = -3 and their product is "c": h.k = -10, In this example those numbers are: -5 and 2. Therefore: (x - 5)(x + 2) = 0, and roots are 5 and -2. Case 2, Ex. 1: If $a \neq 1$: $-2x^2 + 4x + 6 = 0$ Step 1: Factor GCF if possible, Step 2: then proceed as per as case 1: $-2(x^2 - 2x - 3) = 0$ h + k = -2, and h.k = -3, so h = -3 and k = 1. Therefore: -2(x - 3)(x + 1) = 0, so roots are 1 and -3. Case 2, Ex. 2: $x^2 - 3x = 0$ GCF is "x", x(x - 3) = 0 therefor: x = 0 and 3 are the zeros or roots Case 3, $a \neq 1$, and: $b, c \neq 0$ Ex.: $2x^2 + X - 6 = 0$

In this case the sum is still b; h + k = 1, but the product will be ac; h.k = 2.(-6) = -12. So h = -3 and k = 4Break down the middle term (+1) into 2 numbers, in order to change the trinomial to a Quatronomial:

$$2x^{2} + 4x - 3x - 6 = 0 then factor it 2 by 2$$
$$2x(x + 2) - 3(x + 2) = (x + 2)(2x - 3), therefor: x = -2 and \frac{3}{2}$$

2. Completing square:

Change the general form to: $a(x-h)^2 = k$,then square root both sides.Ex. 1: $2(x-2)^2 - 18 = 0$ $2(x-2)^2 = 18$ $(x-2)^2 = 9$ $x - 2 = \pm 3$,Therefor: x = -1, 5Ex. 2: $-2x^2 + 10x - 3 = 0$ $-2(x^2 + 5x) = 3$ $x^2 + 5x = -3/2$

Use quadratic identity to change it into: $(x + 5/2)^2$ by dividing b by 2, (5/2) then add $(5/2)^2$ to both sides in order to make the left side a perfect square:

$$x^{2} + 5x + 25/4 = -3/2 + 25/4$$
 Therefor: $(x + 5/2)^{2} = 19/4$ then: $x = \pm \frac{\sqrt{19}}{2} - \frac{5}{2}$

3. Quadratic formula:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
$$\Delta = b^2 - 4ac$$

Discriminant:

Nature of roots: $\Delta < 0$: no real root, $\Delta = 0$: one real root, $\Delta > 0$: 2 real rootsSum of roots: $S = -\frac{b}{a}$ Product of roots: $P = \frac{c}{a}$ Vertex, Max or min are at: $x = -\frac{b}{2a}$

Quadratic Function:

General Form:

 $y = ax^2 + bx + c$

a, b, and c are real numbers.

The original form and the graph is called Parabola: $y = x^2$

 $a \neq 0$, but b = 0 and $c \neq 0$ $y = x^2 + c$ x = 0 is axis of symmetry Vertex: V(0, c)

Ex. $y = x^2 - 4$

Standard or Vertex	form:	$y = a(x - h)^2 + k$
Axis of symmetry:	x = h,	Vertex: V(h, k),

a ≠ 0, but b ≠ 0 and c = 0 y = x² + bx = x(x - b) x = $\frac{-b}{2}$ is axis of symmetry

 $Ex. y = x^2 - 2x$

WWW.e-tutorpro.com

Factor form:

y = a(x - b)(x - c)

b and c are the x Intercepts, the axis of symmetry and the vertex at: $x = \frac{b+c}{2}$.

In all 3 cases "a" is the "Vertical Reflection, Expansion or Compression factor".

Examples of Quadratic functions and graphs:

Vertex form:

 $y = 2(x-2)^2 + 1$

Factor form: Y =

Y = -(x + 1)(x - 3)

Vertex at: V(2, 1), Axis of symmetry: x = 2Y intercept: (0, 9), a = 2, vertically expanded by a factor of 2, (positive, opening up) $\Delta < 0$, No real root, no x intercept.

 X Intercepts: -1, 3
 y = 0

 Y Intercept: - (-1).(3) = 3
 x = 0

 Axis of symmetry: x = 1 (-1 + 3)/2 = 1

 Vertex at:
 V(1, 4)
 x = 1, y = 4

 a = -1, (negative, opening down)

