Numbers

Complex numbers: $Z=R+i I, R$ and I are Real numbers and: $i=\sqrt{-1}$
" R " Is the real part and " $i I$ " is the imaginary part.
$E x .: Z=2-i 3$

1. Real numbers " R ": all numbers including "Rational" and "Irrational" numbers as follows.

Rational numbers " \boldsymbol{Q} " is defined as the ratio of $\left(\frac{m}{n}\right)$, m and n are Integers but $\mathrm{n} \neq 0 . \boldsymbol{Q} \in \boldsymbol{R}$ The ratio can be summarized in one of the following cases:

Ex.: $\quad \frac{-12}{4}=-3$, an integer.

$$
\begin{aligned}
& \frac{19}{8}=2.375, \text { an ending decimal. } \\
& \frac{7}{3}=2.33333 \ldots=2 . \overline{3}, \text { a repeating decimal. }
\end{aligned}
$$

Note: A rational number cannot be an endless decimal, but due to limitation of number of digits in calculators sometimes the end or repeating digits cannot be seen:

$$
\frac{17}{13}=1.30769230769 \text { or } \frac{19}{23}=0.82608695652
$$

Natural numbers " \boldsymbol{N} ", are whole numbers used for counting: $\{0,1,2,3,4,5, \ldots \ldots\} . \boldsymbol{N} \in \boldsymbol{Z} \in \boldsymbol{Q} \in \boldsymbol{R}$ Note: In some sources, Zero is included in Whole numbers "W", but excluded in Natural numbers.

Integers " \mathbf{Z} ": are positive and negative natural numbers, $\mathbf{Z}=+/-\{\boldsymbol{N}\} . \boldsymbol{Z} \in \boldsymbol{Q} \in \boldsymbol{R}$

Irrational numbers " $\overline{\boldsymbol{Q}}$ ": or \boldsymbol{Q}^{\prime} : are endless decimals, it happen in the case of "not perfect root". $\overline{\boldsymbol{Q}} \in \boldsymbol{R}$ Ex.: $\sqrt{5}, \sqrt[3]{4}$, this set also includes " π " $=3.14159265359$ and " e " $=2.71828182846$ (natural log base).

Transcendental numbers; π and e, means they are not a solution of an algebraic equation
Ex.:

$$
x^{2}-5=0 \quad \text { in which }: \quad x=\mp \sqrt{5}
$$

Numbers are summarized in the following diagram:

Complex numbers

2. Imaginary numbers: are the square root of a negative number which will be treated with 2 separate factors: $\sqrt{-1}$ represented by " i " and a real number " \boldsymbol{i} "

Ex.:

$$
z=3+\sqrt{-2}=3+i \sqrt{2}
$$

Notes:

$$
\begin{array}{ll}
i=\sqrt{-1} & i^{2}=-1 \\
i^{3}=-1 i=-i & i^{4}=+1
\end{array}
$$

Prime Numbers:

Are natural numbers which are only divisible by 1 , and themselves, means their only factors are 1 and themselves. 0,1 are not a prime number.

Ex. $\{2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,91,97, \ldots$.

Factorial:

$$
n!=1 \times 2 \times 3 \times 4 \times 5 \times \ldots(n-2) \cdot(n-1) \cdot n
$$

Ex.: $\quad 6!=1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6=720$

